

The manufacturer may use the mark:

Revision 1.1 February 23, 2023 Surveillance Audit Due March 1, 2026

SIG 1802369 C004

exida hereby confirms that the:

3-Way Hydraulic Control Valves SigmaHLR Flower Mound, TX - USA

Has been assessed per the relevant requirements of:

IEC 61508: 2010 Parts 1-2

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Safety Function:

The valve will control the open/close operating sequence of Surface Controlled Sub Surface Safety Valves (SCSSV) or Surface Safety Valves (SSV).

Application Restrictions:

The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.

Evaluating Assessor

Certifying Assessor

Certificate / Certificat / Zertifikat / 合格証 SIG 1802369 C004

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Systematic Capability:

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints must be met for each element. This device meets *exida* criteria for Route 2_H.

Model	Service
20HM52	Standard
20HM24	Standard or H2S

IEC 61508 Failure Rates in FIT*

Application/Device/Configuration	$\lambda_{\scriptscriptstyle{ extsf{SD}}}$	λ _{su}	λ _{DD}	λ _{DU}
3-Way Hydraulic Control Valve	0	110	0	89

^{*} FIT = 1 failure / 109 hours

SIL Verification:

The Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) must be verified via a calculation of PFH/PFD_{avg} considering redundant architectures, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each element must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements.

The following documents are a mandatory part of certification:

Assessment Report: SIG 18/02-369 R006 V1 R2 (or later)

Safety Manual: SIGMAHLR 20HM52 & 20HM24 SAFETY MANUAL Rev 1 (or later)

3-Way Hydraulic Control Valve

80 N Main St Sellersville, PA 18960

[†] PVST = Partial Valve Stroke Test of a final element Device

SIGMAHLR Hydraulic Interface Valve SAFETY MANUAL APPLICABLE FOR MODELS 20HM52 & 20HM 54

Model	Pressure Rating (PSI)	Operator Pressure Rating (PSI)	Service
20HM52	6000 psi max	150 psi max	Standard
201111132	0000 psi max	130 psi max	Standard
20HM 24	10,000 psi max	150 psi max	Std or H2S

1 INTRODUCTION

This Safety Manual provides information necessary to design, install, verify and maintain a Safety Instrumented Function (SIF) utilizing the Hydraulic Interface Valve with model numbers 20HM52 & 20HM24. This manual provides necessary user information and requirements for meeting the IEC 61508 and/or IEC 61511 functional safety standards.

1.1 Terms and Abbreviations

Safety Freedom	Freedom from unacceptable risk of harm
Basic Safety	The equipment must be designed and

manufactured such that it protects against risk of damage to persons by electrical shock and other hazards and against resulting fire and explosion.

The protection must be effective under all conditions of the nominal operation and under

single fault condition

Functional Safety The ability of a system to carry out the actions

necessary to achieve or to maintain a defined safe

state for the equipment / machinery / plant /

apparatus under control of the system

Safety Assessment The investigation to arrive at a judgment - based

on evidence - of the safety achieved by safety-

related systems

Element part of a subsystem comprising a single

component or any group of components that

performs one or more element safety functions

Fail-Safe State state of the process when safety is achieved; A

loss or significant decrease of inlet supply pressure establish high volume reverse flow

exhaust.

Fail Safe Failure that causes the hydraulic interface valve

to go to the defined fail-safe state without a

demand from the process.

Fail Dangerous Failure that does not permit the SIF to respond to

a demand from the process (i.e. being unable to go

to the defined fail-safe state).

Fail Dangerous Undetected Failure that is dangerous and that is not

being diagnosed by automatic testing.

Fail Dangerous Detected Failure that is dangerous but is detected by

automatic testing.

Fail Annunciation Undetected Failure that does not cause a false trip

or prevent the safety function but does cause loss of an automatic diagnostic

and is not detected by another

diagnostic.

Fail Annunciation Detected Failure that does not cause a false trip

or prevent the safety function but does cause loss of an automatic diagnostic

or false diagnostic indication.

Fail No Effect Failure of a component that is part of

the safety function but that has no

effect on the safety function.

Low demand mode Mode where the safety function is only

performed on demand, to transfer the EUC into a specified safe state, and where the frequency of demands is no

greater than one per year and no greater than twice the proof test

frequency.

High demand mode Mode where the safety function is only

performed on demand, to transfer the EUC into a specified safe state, and where the frequency of demands is greater than one per year or greater than twice the proof test frequency.

Continuous Mode

Mode where the safety function maintains the EUC in a safe state as part of normal operation.

1.2 Acronyms

EUC Equipment Under Control

FMEDA Failure Modes, Effects and Diagnostic Analysis

HFT Hardware Fault Tolerance

MOC Management of Change. These are specific

procedures to follow for any work activities in

compliance with government regulatory authorities or requirements of a standard.

PFDavg Average Probability of Failure on Demand

PFH Probability of Failure per Hour

SFF Safe Failure Fraction, the fraction of the overall

failure rate of an element that results in either a safe fault or a diagnosed dangerous fault.

SIF Safety Instrumented Function, a set of equipment

intended to reduce the risk due to a specific

hazard (a safety loop).

SIL Safety Integrity Level, discrete level (one out of a

possible four) for specifying the safety integrity

requirements of the safety functions to be

allocated to the E/E/PE safety-related systems where Safety Integrity Level 4 is the highest level

and Safety Integrity Level 1 is the lowest.

SIS Safety Instrumented System – Implementation of

one or more Safety Instrumented Functions. A SIS is composed of any combination of sensor(s),

logic solver(s), and final element(s).

1.3 Product Support

Product support can be obtained from: SigmaHLR

sales@sigmahlr.com www.sigmahlr.com

Phone: (+1) 972-355-3453

1.4 Related Literature

Hardware Documents:

Installation, Operation & Maintenance Instructions. This information can be obtained on www.sigmahlr.com or contact sales@sigmahlr.com

Guidelines/References:

- Practical SIL Target Selection Risk Analysis per the IEC 61511 Safety Lifecycle, ISBN 978-1-934977-03-3, Exida
- Control System Safety Evaluation and Reliability, 3rd Edition, ISBN 978-1-934394-80-9, ISA
- Safety Instrumented Systems Verification, Practical Probabilistic Calculations, ISBN 1-55617-909-9, ISA

1.5 Reference Standards

Functional Safety

- IEC 61508: 2010 Functional safety of electrical/electronic/programmable electronic safety-related systems
- IEC 61511:2003 Functional Safety Safety Instrumented Systems for the Process Industry Sector (or ISA 84.00.01 if it is more appropriate)

2 PRODUCT DESCRIPTION

The 20HM24 Series 3-Way NC valve is a two position, three-way normally closed, low pilot supply pressure operated, hydraulic flow control valve assembly. It is designed to establish high-pressure hydraulic fluid output, automatically with each application of relatively low Pilot Supply pressure. A loss of Pilot Supply pressure will block the hydraulic Supply (inlet) port and exhaust the accumulated operating pressure within the high pressure receiving control circuit. Hydraulic Interfaces (Interface Valves) are generally used to control the open/close operating sequence of Surface Controlled Subsurface Safety Valves (SCSSV) or Surface Safety Valves (SSV). The valves are provided with a manual Override Handle (shown) to establish internal hydraulic Supply to Valve flow, without the application of Pilot Supply pressure. This feature allows the SCSSV or SSV to be opened for normal start-up.

The **20HM52** is a two position, three-way normally closed, Pilot Supply pressure operated, high flow hydraulic control valve assembly. It is designed to establish high pressure hydraulic fluid output automatically with each application of relatively low Pilot Supply pressure. A loss of operating Pilot Supply pressure will block the hydraulic Supply (inlet) port and exhaust the accumulated operating pressure within the high pressure receiving control circuit. Hydraulic Interfaces are used to control the open/close operating sequence of Surface Controlled Sub Surface Safety Valves (SCSSV) or Surface Safety Valves (SSV). The model 20HM52 can be provided with an optional manual Override Handle (shown) to establish internal hydraulic Supply to Valve flow, without the application of Pilot Supply pressure. This feature allows the SCSSV or SSV to be opened for normal start-up operation or for maintenance/testing purposes.

•

2.1 Hardware and Software Versions

Not applicable.

3 DESIGNING A SIF USING A MANUFACTURER PRODUCT

3.1 Safety Function

The safety function of 3-way Hydraulic interface valves are designed to establish high pressure hydraulic output with each application of low pilot supply pressure. This loss of pilot pressure will block the hydraulic supply (inlet) port & exhaust the accumulated operating pressure within high pressure receiving circuit.

The listed 3-way hydraulic interface valve models are intended to be part of a SIF subsystem as defined per IEC 61508 and the achieved SIL level of the designed function must be verified by the designer.

3.2 Environmental limits

The designer of a SIF must check that the product is rated for use within the expected environmental limits. Refer our listed hydraulic interface valve models spec. sheets for environmental limits.

3.3 Application limits & restrictions

The listed hydraulic interface valve models are intended for use in the Oil & Gas Industry to control the Subsurface Safety Valve (SCSSV) actuator. Please refer our product spec sheets for its intended applications & usage requirements.

The materials of construction of listed hydraulic interface valve models are specified in the individual model product spec sheets. It is especially important that the designer check for material compatibility considering on-site chemical contaminants and air supply conditions. If the listed hydraulic interface valve models are used outside of the application limits or with incompatible materials, the reliability data provided becomes invalid. Decommissioning and disposal considerations for the product due to materials of construction are listed in installation manual.

3.4 Design Verification

A detailed Failure Mode, Effects, and Diagnostics Analysis (FMEDA) report is available from **SigmaHLR**. This report details all failure rates and failure modes as well as the expected lifetime. Assumptions made during the FMEDA are listed in the FMEDA report.

The achieved Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) design must be verified by the designer via a calculation of PFDavg or PFH, considering safety architecture, proof test interval, proof test effectiveness, any automatic diagnostics and worst-case fault detection interval, average repair time and the specific failure rates of all products included in the SIF. Each subsystem must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements. The Exida exSILentia® tool is recommended for this purpose as it contains accurate models for the listed hydraulic interface valve models and its failure rates. The failure rate data listed the FMEDA report are only valid for the useful life time of listed hydraulic interface valve models. The failure rates will increase sometime after this time period. Reliability calculations based on the data listed in the FMEDA report for mission times beyond the lifetime may yield results that are too optimistic, i.e. the required Safety Integrity Level will not be achieved. An appropriate MTTR shall be selected based on SigmaHLR and/or plant operation and maintenance procedures.

3.5 SIL Capability

3.5.1 Systematic Integrity

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer. A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than the statement without "prior use" justification by the end user or diverse technology redundancy in the design.

3.5.2 Random Integrity

The hydraulic interface valve models in this document are Type A Element. Therefore, the hydraulic interface valve can be classified as a 2H device when the listed failure rates are used. When 2H data is used for all the devices in an element, then the element meets the hardware

architectural constraints up to SIL 2 at HFT=0 (or SIL 3 @ HFT=1) per Route 2H. If Route 2H is not applicable for the entire final element, the architectural constraints will need to be evaluated per Route 1H

3.5.3 Safety Parameters

For detailed failure rate information refer to the Failure Modes, Effects and Diagnostic Analysis Report for the listed hydraulic interface valve models in this document.

4 OPERATION AND MAINTENANCE

For a routine maintenance for any safety recommendations use the listed hydraulic interface valve models spec. sheets for its rated pressures & at specified operating temperatures only. Refer the spec. sheets for all necessary technical information & product limitations.

4.1 Proof test without automatic testing

The objective of proof testing is to detect failures within listed hydraulic interface valve models that are not detected by any automatic diagnostics of the system. Of main concern are undetected failures that prevent the safety instrumented function from performing its intended function.

The frequency of proof testing, or proof test interval, is to be determined in reliability calculations for the safety instrumented functions for which listed hydraulic interface valve

models *are* applied. The proof tests must be performed at least as frequently as specified in the calculation to maintain the required safety integrity of the safety instrumented function.

The following proof test is recommended. The results of the proof test should be recorded and any failures that are detected and that compromise functional safety should be reported to SigmaHLR.

Table1: Recommended proof Test

Step	Action
1	Bypass the safety function and take appropriate action to avoid a false trip.
2	Interrupt or change the pressure of the flowline port of 3- way hydraulic control valve to force the valve to perform an exhaust function & confirm the safety sate for the final element was achieved & within correct time.
3	Inspect the 3-way hydraulic interface valve for any visible damage or contamination.
4	Restore the pilot supply pressure to flowline port of 3-way hydraulic interface valve and inspect the interface valve for any leaks, visible damage or contamination & confirm the normal operating stage was achieved.
5	Remove the bypass and otherwise restore normal operation.

The tests to be effective the movement of the valve must be confirmed. To confirm the effectiveness of the test both travel of the valve & slew rate must be monitored & compared to expected results to validate the testing.

Proof Test Coverage:

The proof test coverage for various device configurations is given Table 2

Table 2 Proof test Results- 3-way hydraulic interface valve

DEVICE	$\lambda_{\rm DU} {\rm PT}^5 ({\rm FIT})$	PROOF TEST
		COVERAGE
3-way	6	93%
hydraulic		
interface		
valve		

The person(s) performing the proof test of a 3-way hydraulic interface valve should be trained in SIS operations, including bypass procedures, valve maintenance and company Management of Change procedures. It is recommended that a physical inspection (Step 3 from Table 1) be performed on a periodic basis with the time interval determined by plant conditions. A maximum inspection interval of 2 years is recommended.

4.2 Repair and replacement

Repair procedures as recommended in the listed hydraulic interface valve models spec. sheets should be followed. Contact SigmaHLR (sales@sigmahlr.com) for any further assistance.

4.3 Useful Life

The useful life of the hydraulic interface valve is 10 to 15 years, or 10,000 cycles

4.4 MANUFACTURER Notification

Any failures that are detected and that compromise functional safety should be reported to SigmaHLR. Please contact sales@sigmahlr.com or call us at +972-355-3453 for any notifications related hydraulic interface valve sensor models listed in this document.